TOPIC 5: Indefinite Integrals and Techniques of Integration

1. INDEFINITE INTEGRAL

Definition: Antiderivatives

A function F is said to be an **antiderivative** of a function f if

 $F'(x) = f(x)$ at every number *x* where $f(x)$ is defined.

If $F'(x) = f(x)$, then $F(x)$ is an antiderivative of $f(x)$.

F is an antiderivative of *f* iff *f* is the derivative of *F .*

Example 1:

Is $f(x) = 3x^2 + 2$ the derivative of a certain function? What is an antiderivative of f?

 $F(x) = x^3 + 2x + 4$ and $G(x) = x^3 + 2x$ are both antiderivatives of $f(x)$. Note that $F(x) = G(x) + C$, with $C = 4$.

In fact every antiderivative of $f(x)$ with $f(x) = 3x^2 + 2$ has the form $x^3 + 2x + C$, for *some constant C .*

Theorem:

If $F(x)$ and $G(x)$ are antiderivatives of a function $f(x)$ on an interval, then there is a constant *C* such that $F(x) - G(x) = C$.

(Two antiderivatives of a function can differ only by a constant.)

If *G* is an antiderivative of *f* and $F(x) = G(x) + C$ for a constant *C*, then *G* is also an antiderivative of *f* .

A special symbol is used to denote the collection of all antiderivatives of a function *f .*

Definition: Indefinite Integrals

We call the set of all antiderivatives of a function the **indefinite integral** of the function. The indefinite integral of a function f using the variable x is denoted by

 ∫ $\int f(x)dx$. [Read as "the indefinite integral of $f(x)$ with respect to *x*".]

The symbol \int is an **integral sign.** The function f is the **integrand** of the integral, and x is the **variable of integration.**

When we find $F(x) + C$, we say that we **integrate** $f(x)$ with respect to *x* and evaluate the integral $\int f(x)dx$.

Example 2:

(a)
$$
\int 2xdx = x^2 + C
$$

\n(b) $\int 4x^3 dx = x^4 + C$
\n(c) $\int 10x^4 dx =$
\n(d) $\int x^4 dx =$
\n(e) $\int 7 dx =$
\n(f) $\int \cos x dx =$

[To Students: Whenever you have carried out an integration, how can you check if you have done it correctly?]

2. INTEGRATION RULES

Suppose that $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ and $g(x)$ respectively, and k is an arbitrary number. Then:

1.
$$
\int f(x)dx = F(x) + C
$$
 (Note that this is equivalent to $\int \left[\frac{d}{dx}F(x)\right]dx = F(x) + C$)

- 2. Constant Multiple Rule: $\int kf(x)dx = k \int f(x)dx = kF(x) + C$
- 3. Rule for Negatives: $\int -f(x)dx = -\int f(x)dx = -F(x) + C$

4. Sum and Difference Rule:
\n
$$
\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx = F(x) \pm G(x) + C
$$

Be smart in using the above rules, as illustrated by the following example from Thomas' Calculus.

Example 3

Evaluate $\int (x^2 - 2x + 5) dx$

If we recognize that $(x^3/3) - x^2 + 5x$ is an antiderivative of $x^2 - 2x + 5$, Solution we can evaluate the integral as

antiderivative

$$
\int (x^2 - 2x + 5) \, dx = \frac{x^3}{3} - x^2 + 5x + C
$$
\n_{arbitrary constant}

If we do not recognize the antiderivative right away, we can generate it term-by-term with the Sum, Difference, and Constant Multiple Rules:

$$
\int (x^2 - 2x + 5) dx = \int x^2 dx - \int 2x dx + \int 5 dx
$$

= $\int x^2 dx - 2 \int x dx + 5 \int 1 dx$
= $\left(\frac{x^3}{3} + C_1\right) - 2 \left(\frac{x^2}{2} + C_2\right) + 5(x + C_3)$
= $\frac{x^3}{3} + C_1 - x^2 - 2C_2 + 5x + 5C_3$.

This formula is more complicated than it needs to be. If we combine C_1 , $-2C_2$, and $5C_3$ into a single arbitrary constant $C = C_1 - 2C_2 + 5C_3$, the formula simplifies to

$$
\frac{x^3}{3} - x^2 + 5x + C
$$

and *still* gives all the possible antiderivatives there are.

For this reason, we recommend that you go right to the final form even if you elect to integrate term-by-term. Write

$$
\int (x^2 - 2x + 5) dx = \int x^2 dx - \int 2x dx + \int 5 dx
$$

= $\frac{x^3}{3} - x^2 + 5x + C$.

Find the simplest antiderivative you can for each part and add the arbitrary constant of integration at the end. (T^*)

For integration:

- 1. Know basic integration rules
- 2. Remember a few basic formulas based on your knowledge from differentiation
- 3. Know how to use substitution
- 4. Know how to use partial fractions $+$ trigonometric identities
- 5. Know integration by parts

3. BASIC INTEGRATION FORMULAS

There is no real need to memorize any so-called basic integration formula if you know basic differentiation well.

What you must remember from differentiation:

Formulas that need no memorization if you know the chain rule for differentiation.

Example 5:

(a)
$$
\int (\sin 3t - 2e^{-3t}) dt
$$
 (b) $\int (6e^{2x} + \sec^2 5x) dx$ (c) $\int (5\cos 2u - 2e^{4u}) du$

No need to memorize these formulas. Learn to derive them yourself; you are then doing some real mathematics.

The following can be obtained via integration by parts (*to be discussed later*). $\int \ln x \, dx = x \ln x - x + C$

Some authors/teachers like to list the following for student to memorize.

1.
$$
\int [g(x)]^n g'(x) dx = \frac{1}{n+1} [g(x)]^{n+1} + C \qquad \text{for } n \neq -1
$$

2.
$$
\int \frac{g'(x)}{g(x)} dx = \ln g(x) + C
$$

3.
$$
\int e^{g(x)} g'(x) dx = e^{g(x)} + C
$$

[*Can be obtained via substitution rule; you should know them through practice; no real need to memorize***.]**

Example 6: (Please see the next section) (a) $\int (ax+b)^n dx$ (b) $\int \frac{1}{ax+b}$ *dx* $ax + b$ 1

b. a

4. INTEGRATION BY SUBSTITUTION (also called integration by change of variable)

With the right choice of substitution, an integral in one variable can be transformed into another one (involving a new variable) that is easier to evaluate.

Example 7:

 $\int (2x^3 + 1)^4 (6x^2) dx$ $(2x^3 + 1)^4 (6x^2)dx$ [We are going to use the substitution $u = 2x^3 + 1$.] Let $u = 2x^3 + 1$. Then $du = \frac{du}{dx} dx = 6x^2 dx$ *dx* $du = \frac{du}{dx} dx = 6x^2 dx$. [Note : Some people would write $du = 6x^2 dx$ directly. To those who have some

difficulty seeing it, you are advised to write the differentiation step $\frac{du}{dx} = 6x^2$ *dx* $\frac{du}{dt} = 6x^2$ first followed by $du = 6x^2 dx$.

$$
\int (2x^3 + 1)^4 (6x^2) dx
$$

= $\int (2x^3 + 1)^4 (6x^2) dx$
= $\int u^4 du$ [The variable of integration is changed from x to u.]
= $\frac{u^5}{5} + C$ [This expression involves u.]
= $\frac{(2x^3 + 1)^5}{5} + C$. [The original integral involves x,
so we transform to an expression involving x.]

[You can check the correctness of this result by finding $\frac{a}{L}$] $\frac{(2x+1)}{5} + C$ \rfloor ⅂ \mathbf{r} L Γ $\frac{x^3+1}{2}$ + C *dx d* 5 $(2x^3+1)^5$.]

dx

 $ax + b$

Example 6: (Revisited) (a) $\int (ax+b)^n dx$ (b) $\int \frac{1}{ax+b}$ 1

Example 8:

$$
\int \frac{2x}{\sqrt{x+3}} dx \quad \text{Let } u = \sqrt{x+3} \text{. Then } u^2 = x+3 \text{, so } x = u^2 - 3 \text{ and } dx = 2u \ du
$$
\n
$$
\int \frac{2x}{\sqrt{x+3}} dx = \int \frac{2(u^2 - 3)}{u} 2u \ du = \int 4(u^2 - 3) du = \dots
$$

Theorem – The Subsitution Rule

If $u = g(x)$ is differentiable function whose range is an interval *I* and f is a continuous function on *I*, then

$$
\int f(g(x)) \cdot g'(x) dx = \int f(u) du
$$

Example 9:

Use the Method of Substitution to evaluate the indefinite integrals

(a)
$$
\int 2x\sqrt{1+x^2} dx
$$
 (b) $\int \sin^4 x \cos x dx$, $u = \sin x$ (c) $\int \frac{x}{x^2+1} dx$, $u = x^2 + 1$,
\n(d) $\int \frac{x+4}{(x^2+8x)^3} dx$ (e) $\int x^2 e^{x^3} dx$

Solution (a):

Let
$$
u = 1 + x^2
$$
, $\frac{du}{dx} = 2x$, $du = 2xdx$, $xdx = \frac{1}{2}du$

$$
\int 2x\sqrt{1 + x^2} dx = \int 2u^{\frac{1}{2}} \cdot \frac{1}{2} du = \int u^{\frac{1}{2}} du
$$

$$
= \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + C
$$

$$
= \frac{2}{3}(1 + x^2)^{\frac{3}{2}} + C
$$

5. INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

To see how the method of partial fractions works in general, let's consider a rational function (x) $f(x) = \frac{P(x)}{P(x)}$ *Q x* $f(x) = \frac{P(x)}{P(x)}$, where *P* and *Q* are polynomials.

If the degree of *P* is less than the degree of *Q*, such a rational function is called *proper* and it is possible to express *f* as a sum of simpler fractions.

If the degree of *P* is greater than or equal to the degree of Q (in this case, f is called *improper*), then *f* can be expressed as a sum of a polynomial and a proper rational function through long division.

 (x) $(x) + \frac{R(x)}{R(x)}$ (x) $f(x) = \frac{P(x)}{P(x)}$ *Q x* $S(x) + \frac{R(x)}{2}$ *Q x* $f(x) = \frac{P(x)}{P(x)} = S(x) + \frac{R(x)}{R(x)}$, where $R(x)$ is the remainder of the long division and has

degree less than that of *Q* .

For a full discussion on partial fraction, you need to refer to your earlier study.

*****For this course, we shall consider only the case where $Q(x)$ can be written as a **product of distinct linear factors.******** (as illustrated by the following examples)

Example 10:

(a)
$$
\int \frac{1}{x^2 - 9} dx
$$

\n(b) $\int \frac{x + 4}{2x^3 - 3x^2 - 2x} dx$
\nSolution (a)
\n $x^2 - 9 = (x - 3)(x + 3)$
\n $\frac{1}{x^2 - 9} = \frac{1}{(x - 3)(x + 3)} = \frac{A}{x - 3} + \frac{B}{x + 3}$
\n $\frac{1}{(x - 3)(x + 3)} = \frac{A(x + 3) + B(x - 3)}{(x - 3)(x + 3)}$
\n $A(x + 3) + B(x - 3) = 1$

TWO ways to determine the values of A and B

(Continue)

6. INTEGRATION INVOLVING TRIGONOMETRIC IDENTITIES

In Topic 2 (Complex Numbers and Trigonometric Identities), Euler's formula has been used to derive trigonometric identities that

- (i) express $\sin mx \cos nx$, $\cos mx \cos nx$ or $\sin mx \sin nx$ as a sum/difference of sines/cosines.
- (ii) express a power of $\sin mx$ or $\cos nx$, as a sum of terms involving sines/cosines (not any higher power of it) and/or constant.

We shall confine ourselves to integrands of types described in (i) and (ii).

For other integrands involving trigonometric functions, appropriate identities will be provided. [It is not necessary for you to memorize too many identities.]

Example 11

(a)
$$
\int \sin 3x \cos 4x \, dx
$$
 (b) $\int \cos^3 5x \, dx$

Solution: (a)

 In example 3, section 2.4 of Topic 2, Euler's formula was use to derive: 1

$$
\sin 3x \cos 4x = \frac{1}{2} (\sin 7x - \sin x)
$$

So, $\int \sin 3x \cos 4x \, dx = \frac{1}{2} \int (\sin 7x - \sin x) \, dx = \frac{1}{2} (-\frac{1}{7} \cos 7x + \cos x) + c$

$$
= -\frac{1}{14} \cos 7x + \frac{1}{2} \cos x + c
$$

(b) From Euler's formula, we have 2 cos θ $=\frac{e^{i\theta}+e^{-i\theta}}{2}$.

$$
\cos^3 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^3 = \frac{e^{i3\theta} + 3e^{i\theta} + 3e^{-i\theta} + e^{-i3\theta}}{8} = \frac{e^{i3\theta} + e^{-i3\theta} + 3(e^{i\theta} + e^{-i\theta})}{8}
$$

$$
= \frac{2\cos 3\theta + 6\cos \theta}{8} = \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos \theta
$$
So $\int \cos^3 5x \, dx = \int \left[\frac{1}{4}\cos 15x + \frac{3}{4}\cos 5x\right]dx = \frac{1}{60}\sin 15x + \frac{3}{20}\sin 5x + C$

7. INTEGRATION BY PARTS

If *u* and *v* are differentiable functions, then

$$
\int \frac{d}{dx} [u(x)v(x)] dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx
$$

$$
\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx \quad \text{or} \quad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.
$$

This equation can be written in a simpler form:

$$
\int u dv = uv - \int v du
$$

An integral like ∫ *udv* is transformed into a form involving ∫ *vdu* ; let's hope that ∫ *vdu* is easier to handle than ∫ *udv* .

Examples 12:

Use Integration by Parts to evaluate the indefinite integrals

(a) $\int x \sin x \, dx$ (b) ∫ *xe dx ^x* (c) $\int \ln x \, dx$ (d) $\int x^2 \sin x dx$ (e) $\int x^2 e^x dx$ [For (d) and (e), *you may need to carry out integration by parts more than once*.]

Solution (b):
$$
\int xe^x dx
$$

Integration by parts is a technique for integrating the product of two functions; one of them can be easily integrated and the other needs to be differentiated, leading to a new form involving an integral that is easier to evaluate.

Sometimes integration by parts needs to be applied repeatedly.

Some people would introduce "**Tabular Integration"** for doing integration by parts repeatedly. Some students would end up learning only the tabular form. This is not advisable. Students are advised against this.

(nby, Nov 2015)